- 1798: Tassart (France) discovers CoCl₃ in aqueous ammonia gives a pink "salt" with the composition of CoN₆H₁₈Cl₃ = CoCl₃(NH₃)₆.
- Over the next 50 years: Numerous series of related cobalt, iridium and platinum complexes were prepared (see below). The nature of these inorganic species remained a mystery.

Semi-empirical formula	Colour	Original name	Equivalents of AgCl precipitated upon Ag ⁺ addition (Blomstrand)	Number of ions (+ve or –ve) predicted from conductivity measurements (Werner)
CoCl ₃ (NH ₃) ₆	Yellow	Luteocobaltic	3	4
CoCl ₃ (NH ₃) ₅	Purple	Purpureocobaltic	2	3
CoCl ₃ (NH ₃) ₄	Green ¹	Praseocobaltic	1	2
CoCl ₃ (NH ₃) ₄	Violet ¹	Violeocobaltic	1	2
CoCl ₃ (NH ₃) ₃	Orange	-	0	0

1. This compound has two isomers. One is green (*trans*-isomer) and the other is violet (*cis*-isomer).

1862: Blomstrand (Sweden) suggested these structures:

1892: Werner (Germany) proposed a different interpretation based on careful conductivity measurements:

cis - and trans - Tetramminedichlorocobalt (III), [Co(NH3)4Cl2]*

Octahedral (two isomers)

 In order to persuade his toughest critics Werner prepared the following chiral complex, the cis isomer of which is chiral, and thus, has two optical isomers.

- The two optical isomers were separate and specific optical rotation measured.
- Blomstrand insisted he was correct, and that the optical activity of the compounds was due to the carbon atoms.
- Werner aims to prepare the first optically active octahedral complex that does not contain carbon.
- **1913**: Werner received Nobel Prize.
- 1914: Werner resolves the optical isomers of the first optically active ~ compound that does not contain carbon.

Conductivities of Coordination Compounds

Formula	conductivity [W ⁻¹ cm ² mol ⁻¹]	Electrolytes	Werner formulation
PtCl ₄ ·2NH ₃	4	0	[Pt(NH ₃) ₂ Cl ₄] (trans)
PtCl ₄ ·2NH ₃	7	0	[Pt(NH ₃) ₂ Cl ₄] (cis)
NaCl	124	1:1	-
PtCl ₄ ·3NH ₃	97	1:1	[Pt(NH ₃) ₃ Cl ₃]Cl
PtCl ₄ ·NH ₃ ·KCl	107	1:1	K[Pt(NH ₃)Cl ₅]
CaCl ₂	261	1:2	-
CoCl ₃ ·5NH ₃	261	1:2	[Co(NH ₃) ₅ Cl]Cl ₂
CoBr ₃ ·5NH ₃	258	1:2	[Co(NH ₃) ₅ Br]Br ₂
CrCl ₃ ·5NH ₃	260	1:2	[Cr(NH ₃) ₅ Cl]Cl ₂
CrBr ₃ ·5NH ₃	280	1:2	[Cr(NH ₃) ₅ Br]Br ₂
PtCl ₄ ·4NH ₃	229	1:2	[Pt(NH ₃) ₄ Cl ₂]Cl ₂
PtCl ₄ ·2KCl	257	2:1	K ₂ [PtCl ₆]
LaCl ₃	394	1:3	-
CoCl ₃	408	1:3	-
CoCl ₃ ·6NH ₃	432	1:3	[Co(NH ₃) ₆]Cl ₃
CoBr ₃ ⋅6NH ₃	427	1:3	[Co(NH ₃) ₆]Br ₃
CrCl ₃ ·6NH ₃	442	1:3	[Cr(NH ₃) ₆]Cl ₃
PtCl ₄ ·5NH ₃	404	1:3	[Pt(NH ₃) ₅ Cl]Cl ₃
PtCl ₄ ·6NH ₃	523	1:4	[Pt(NH ₃) ₆]Cl ₄